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PARAMETERS FOR IDENTIFICATION OF A CRACK
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A crack in a structure will a!ect the modal parameters both locally as well as
globally. The present work discusses the studies carried out using those parameters
that get changed locally and globally as well as a procedure to identify the crack
location. Even though the crack can be located exactly by monitoring changes that
occur in the parameters locally such as strain variation, etc., this method has
limitations in terms of extracting these locally varying modal parameters. A new
technique is presented to identify the presence of a crack and its location, from the
changes that occur in a few of its lowest natural frequencies, one of the modal
parameters that changes globally. The study is carried out both analytically and
experimentally and the results are presented in this paper. A cantilever beam was
considered and modelled with #at plate bending elements so as to introduce the
crack and analyze the propagation of the crack. The crack is a through-thickness
one, growing along the breadth of the beam starting from one edge. The location of
the crack is also moved from the "xed end to the free end along its length. The
changes in natural frequencies are observed from analytical study, due to the
presence of the crack at di!erent locations and depths, and the percentage change
in frequency values are calculated. These results are con"rmed by the experiments.
From these observations a method is suggested to identify the location of the crack.
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1. INTRODUCTION

The development of damage detection techniques for vibrating structures such as
aircraft structures, large space structures and structures used in ocean environment
has recently become a focus of substantially growing research e!orts. The cracks
can be present in structures due to their limited fatigue strengths or due to the
manufacturing processes. These cracks open for a part of the cycle and close when
the vibration reverses its direction. These cracks will grow over time, as the load
reversals continue, and may reach a point where they pose a threat to the integrity
of the structure. As a result, all such structures must be carefully maintained and
monitored so that in the event of development of any crack, it can be located and
repaired before it can impair the safety of the structures.

There are several non-destructive testing techniques available for crack detec-
tion, for example: Visual examination, Radiographic tests, Ultrasonic testing,
Liquid penetrate tests and Magnetic particle tests. All the above methods cannot be
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utilized under operating conditions of the structures. Due to this limitation it is now
believed that the monitoring of the global dynamics of structures o!ers promising
alternatives for damage detection. The modal parameters such as natural
frequencies and mode shapes can be used to detect the initiation and development
of fatigue cracks. In this present work, we have used the changes in natural
frequencies only, to locate the crack in a cantilever beam.

2. A BRIEF LITERATURE SURVEY

A lot of work has been done and reported in the literature in the area of
sensitivity analysis of modal parameters due to the presence of a crack in simple
structures like beams. Adams et al. [1] modelled the presence of a crack as a spring
whose sti!ness got reduced and also measured the frequency variations. They
modelled the structure as one dimensional and suggested a closed-form procedure
to identify the presence/absence of a crack. Later Cawley and Adams [2] extended
the same procedure to two dimension and proposed a method to monitor the
growth of damage.

Chondros and Dimarogonas [3] modelled the crack in a welded joint replacing it
by a torsional spring and carried out an analytical solution procedure. The results
were plotted as changes in frequency of the structure related to the depth of the
crack. However, they stated that caution must be exercised concerning the material
properties of the weld and also the changes in material properties that occur while
in service. Gudmundson [4] proposed a theoretical procedure to predict the crack
length, the crack position and the crack orientation, and the measured
eigenfrequency changes were used as input data. The analytical eigenvalue change
was measured using fracture mechanics approach in terms of crack length, the
crack position and crack orientation. The di!erence in the measured and analytical
eigenvalues was termed as error function and minimization of that error function
identi"ed the location of the crack. Ostachowicz and Krawczuk [5] proposed
a procedure for identi"cation of a crack based on the measurement of the de#ection
shape of the beam. Gounaris and Dimarogonas [6] and Qian et al. [7] formulated
an algorithm using "nite element method to model a cracked beam. An element
sti!ness matrix of a beam with a crack was formulated and then a "nite element
model of a cracked beam was developed. It was observed that the vibration amplitudes
were a!ected considerably by the presence of cracks. However, it is very di$cult to
measure slopes on the structures although a laser beam technique could be used.

Abraham and Brandon [8] used substructure normal modes to predict the
vibration responses of a cantilever beam with a breathing transverse crack. Pandey
et al. [9] suggested another parameter, namely curvature of the de#ected shape of
beam instead of change in frequencies to identify the location of the crack. Rizos
et al. [10] measured the amplitude at two points and proposed an algorithm to
identify the location of the crack. Feng et al. [11] have suggested measurement of
strain in the cracked beam and stated that strain mode was more sensitive to the
damage of the structure than the natural frequency. Swamidas and Chen [12]
compared a lot of their experimental work with analytical work and concluded that
the sensitive parameters a!ected by a crack in the beam were the natural
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frequencies, response amplitudes and mode shapes. However, the most sensitive
parameter was the the di!erence of strain mode shapes and local strain frequency
response functions.

Ratcli!e [13] used a modi"ed Laplacian operator on mode shape data to locate
the damage in a beam. But it requires cumbersome post processing of determining
cubic polynomial to "t the Laplacian locally at each spatial co-ordinate. The theory
of spring-loaded fracture-hinge was used by Ju and Mimovich [14] to diagnose the
fracture damage in structures by post processing the experimentally obtained
frequency values with analytical frequency equations. Tasi and Wang [15] used the
change in fundamental mode shapes between the cracked and uncracked shafts to
identify the crack location. The crack was modelled as a joint of a local spring. The
transfer-matrix method was employed to obtain the dynamic characteristics.
A bilinear device was used by Chance et al. [16] to simulate the crack in beams and
plates by using mode shapes and curvatures to locate a crack.

In the brief review presented above, it is observed that the prediction of the exact
crack location and the prediction of the severity of the crack are still elusive. Hence
an attempt has been made in this study to address these issues and a procedure
proposed for the prediction of the same.

3. THEORETICAL BACK GROUND

3.1. FLEXURAL VIBRATION OF A BEAM

The partial di!erential equation of motion for the forced vibration of
a non-uniform beam is
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For free vibration f (x, t)"0, and hence the equation of motion becomes
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Solving of the above equation is equivalent to solving of the stationary value of the
variation of the equation:
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where m"oA(x), for non-uniform cross-section.
Taking variation for both sides of equation (3), we get
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for a very small crack in beam dm"0Nd<"0:
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considering the numerator of equation 6, viz,
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Since there is insigni"cant change in curvature, from 0 to l
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For a rectangular beam of width &&B'' and thickness &&¹ '', I"B¹ 3/12,
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Since the integration limit is for a small width of Dx only, equation (8) could be
written as
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The above equation (11) indicates that the vibration of the frequency parameter j is
a function of square of transverse strain of the beam at the crack location. Also, it is
a function of the variation of beam width and variation of the square of transverse
strain at the crack location. Thus, it indicates that the variation of the frequency
parameter is a non-linear one.

3.2. TORSIONAL VIBRATION OF A BEAM

The equation of motion for the free vibration of a beam for its torsional
oscillation about its own axis is given by
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Solving the variation equation of the above problem will yield the following equation:
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Similar to equation (11) we can write the variation of the above equation as
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Equation (14) indicate that the variation of the frequency parameter j is a func-
tion of square of the torsional strain of the beam at the crack location.

4. EFFECTS ON LOCAL MODAL PARAMETERS DUE TO CRACK

The crack in the structure adds #exibility to the structure. This #exibility will
a!ect the physical properties, like sti!ness in the local area around the crack, more
than any other area of the structure. Since modal parameters represent the
structural properties, monitoring of the local changes in the modal parameters will
give a more direct and signi"cant indication of the crack occurring in the structure.
The modal parameters that change locally are mode shapes, i.e., bending mode
shape, torsional mode shape and strain mode shape.



Figure 1. Bending mode shape of uncracked and cracked cantilever beam. (crack location at 0)5¸;
crack depth from 0)1B to 0)5B).

Figure 2. Deviation in bending mode shape of cracked beam w.r.t. uncracked cantilever beam
(crack location at 0)5¸; crack depth from 0)1B to 0)5B).
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4.1. BENDING MODE SHAPE

The #exural mode shape of a uncracked cantilever type of structure is obtained
by solving equation (2) with appropriate boundary conditions and is given by
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However, the theoretical equation (15) representing the mode shape cannot
account for the presence of a crack. Hence, it is resolved to approach the problem of
accounting for the crack in the structure by using FE technique.

A cantilever beam of the dimensions ¸ : B :¹ with ratio 50 : 8 : 1 of aluminium
material was considered for the numerical studies. The beam was modelled with
four noded shell elements so as to introduce the crack and analyze for the
propagation of the crack. The general purpose FE analysis software ANSYS was
used in the modal analysis module to obtain mode shapes.

Mode shape and deviation in the mode shape due to crack for the "rst and
second bending modes are shown in Figures 1 and 2 for the variation of crack depth
ranging from 10 to 50% while the crack was located at ¸/2. It is observed that the
deviation in mode shape is quite insigni"cant with maximum deviation value as low
as 0)008 and 0)03 as shown in Figure 2, and the deviation is maximum at the crack
location. The deviation of the mode shape (de#ection) is distributed throughout the
span of the beam.

4.2. TORSIONAL MODE SHAPE

The torsional mode shape equation of uncracked beam is obtained by solving
equation (12) with appropriate boundary conditions and is given as

h
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The same FE mesh as described above was used to obtain the torsional mode
shapes. First and second rotational mode shape of a cantilever beam and the
changes that occur in the mode shape due to the presence of the crack, ranging from
10 to 50%, are shown in Figure 3, and the maximum deviation in mode shape
values are computed and plotted in Figure 4. It is observed that the deviation is as
small as 0)0075 and 0)018, and at the location of the crack there is a distinct
variation of the change of slope in these curves. Even though there is a qualitative
variation in rotational mode shape, the magnitude of this variation is quite
insigni"cant and the physical measurement of this small variation is next to
impossible.

4.3. STRAIN MODE SHAPE

The strain mode shapes are the function of second derivatives of the de#ected
shapes shown in equations (15) and (16). First and second bending stain modes with



Figure 3. Torsional mode shape of uncracked and cracked cantilever beam (crack location at 0)5¸;
crack depth from 0)1B to 0)5B).

Figure 4. Deviation in torsional mode shape of cracked beam w.r.t. uncracked cantilever beam
(crack location at 0)5¸; crack depth from 0)1B to 0)5B).
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Figure 5. Strain (of bending) mode shape of cracked cantilever beam (crack location at 0)5¸; crack
depth from 0)1B to 0)5B).

Figure 6. Strain (of torsional) mode shape of cracked cantilever beam (crack location at 0)5¸; crack
depth from 0)1B to 0)5B).
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Figure 7. Change in frequency versus crack location of cantilever beam ("rst four bending and four
torsional modes).
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the e!ect of the crack are shown in Figure 5. It is observed that there is quite
a signi"cant change in strain modes at the location of the crack. However, this
change is quite localized, namely, in the vicinity of the crack only. Therefore,
measurement of strain by a sensor at the crack location would be ideal but all other
places the sensor will not have any sensible variation. Therefore, measurement of
strain mode values is not a practical one to locate the crack since prior knowledge
of the location of the crack is not available to us.

Similarly, the "rst and second torsional strain modes are shown in Figure 6. We
could observe a similar behavior as above, i.e., there is a steep variation in strain at
the crack location. The limitation to measure the strain at the location of the crack
prevails here also.

4.4. EFFECT OF USE OF LOCAL/GLOBAL MODAL PARAMETERS TO LOCATE THE CRACK

The discussions in the previous three sections indicate that the local parameters
like bending and torsional mode deviation and strain mode changes have
insigni"cant contribution or highly localized contribution which cannot be
practically measured to identify the location of the crack. Therefore, an attempt is
made to look into the global parameters, like frequencies and the change in
frequencies, to identify the presence of a crack.

The change in frequency of any mode is dependent on the location and depth of
crack, and it is proportional to the square of the strain value of that mode at
a particular location [equations (11) and (14)]. In other words, the change in



Figure 8. Experimental setup.
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frequency is maximum if the crack is located at the peak/trough of the strain mode,
and it is minimum if the crack is located at the node of the strain mode. Equations
(11) and (14) are plotted and shown in Figure 7 by normalizing the maximum value
(at the "xed end) to unity.

In the next section, a study is made to compare the change in frequencies,
obtained due to the presence of a crack, in a beam with an uncracked beam. Both
experimental as well as analytical work was carried out, and the results obtained
are tabulated, plotted and discussed.

5. EVALUATION OF FREQUENCY CHANGES

The procedure used to evaluate the variation of frequency change should be
identical when it is veri"ed by two di!erent procedures, namely, experimental and
analytical. In the present work both the experimental as well as the numerical
(FEM) procedures are used to estimate the frequency changes before they are
compared.

5.1. EXPERIMENTAL PROCEDURE

The same aluminium beam of the dimensions ¸ : B :¹ with ratio 50 : 8 : 1 is
considered for the experiment. RION SA-73 Sound and Vibration Dual Channel
analyzer is used, to extract the natural frequencies, along with B&K-Type 4344
pickup and RION PH-51 impact hammer. Only a few of the lower order frequen-
cies, including the fundamental frequency, were extracted from the experiment.

To start with, the natural frequencies of the uncracked cantilever beam were
measured. Then the crack was generated and propagated to the desired width by
a thin saw cut (around 0)8 mm thick). Nine specimens with the same geometry,
material and cracked at 0)1¸ to 0)9¸, with an increment of 0)1¸, from the clamped
end, and with crack depths of 0)1B to 0)5B, with an increment of 0)1B, at each



Figure 9. Percentage of change in "rst four bending frequencies due to a crack. Experimental
results (Mesh con"guration 1). (a). I bending mode; (b) II bending mode; (c) III bending mode; (d) IV
bending mode. *d* 1/10th crack; *#*; 2/10th crack; ***; 3/10th crack; **K* ; 4/10th crack;
*]2 5/10th crack.

Figure 10. Percentage of change in "rst four torsional frequencies due to a crack. Experimental
results (Mesh con"guration 1). (a) I torsional mode; (b) II torsional mode; (c) III torsional mode; (d) IV
Torsional mode. *d* 1/10th crack; *#*; 2/10th crack; ***; 3/10th crack; **K* ; 4/10th crack;
2]25/10th crack.
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Figure 11. FE mesh of cracked beam. ¸"length of beam; a"crack depth; B"width of beam;
C¸"crack location.

Figure 12. Percentage of change in "rst four bending frequencies due to a crack. Analytical results
(Mesh con"guration 1). I bending mode; (b) II bending mode; (c) III bending mode; (d) IV bending
mode.*d* 1/10th crack;*#*; 2/10th crack;***; 3/10th crack;**K* ; 4/10th crack;*]* 5/10th
crack.
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location were tested. The &&ZOOMING'' capability of the analyzer was used to
observe the change in frequency as crack depth increased.

From experimentally measured frequency values the percentage of change in the
"rst four bending and the "rst four torsional frequencies with respect to the
uncracked beam for each crack location and depth are calculated and shown in
Figures 9 and 10. These results are compared with the analytical "nite element
results and discussed in the next section.

5.2. ANALYTICAL PROCEDURE

A cantilever beam with the same size and material properties was considered for
the numerical studies using ANSYS software. The FE mesh, with the crack



Figure 13. Percentage of change in "rst four torsional frequencies due to a crack. Analytical results
(Mesh con"guration 1). (a) I Torsional mode; (b) II Torsional mode; (c) III Torsional mode; (d) IV
Torsional mode.*d* 1/10th crack;*#*; 2/10th crack;***; 3/10th crack;**K* ; 4/10th crack;
*]* 5/10th crack.

Figure 14. Percentage of change in "rst four bending frequencies due to a crack. Analytical results
(Mesh con"guration 2). (a). I bending mode; (b) II bending mode; (c) III bending mode; (d) IV bending
mode.*d* 1/10th crack;*#*; 2/10th crack;***; 3/10th crack;**K* ; 4/10th crack;2]2 5/10th
crack.
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Figure 15. Percentage of change in "rst four torsional frequencies due to a crack. Analytical results
(Mesh con"guration 2). (a) I Torsional mode; (b) II Torsional mode; (c) III Torsional mode; (d) IV
Torsional mode.*d* 1/10th crack;*#*; 2/10th crack;***; 3/10th crack;**K* ; 4/10th crack;
2]2 5/10th crack.

TABLE 1

Peak/trough and node locations of strain mode shapes

Mode Peak/trough loation (s) Node locations (s)

Bending mode d1 0)0¸ 1)0¸
Bending mode d2 0)0¸, 0)5287¸ 0)2175, 1)0¸
Bending mode d3 0)0¸, 0)3075¸, 0)7087¸ 0)1325¸, 0)4907¸, 1)0¸
Bending mode d4 0)0¸, 0)22¸, 0)5¸, 0)795¸ 0)0945¸, 0)356¸, 0)6416¸, 1)0¸
Torsional mode d1 0)0¸ 1)0¸
Torsional mode d2 0)0¸, 0)6667¸ 0)3333¸, 1)0¸
Torsional mode d3 0)0¸, 0)4¸, 0)8¸ 0)2¸, 0)6¸, 1)0¸
Torsional mode d4 0)0¸, 0)285¸, 0)5725¸, 0)8775¸ 0)1425¸, 0)4275¸, 0)7125¸, 1)0¸
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nomenclature, is shown in Figure 11. Only the "rst four bending modes and "rst
four torsional modes was extracted which were adequate to identify the crack
location. The analysis was carried out for two types of mesh con"gurations and are
described below.

Mesh Con,guration21: Initially, the crack location and length considered were
the same as those of the experimental ones, i.e., the crack location was moved from
0)1¸ to 0)9¸ with an increment of 0)1¸ along the length with crack depth varying
from 0)1B to 0)5B with an increment of 0)1B, for every crack location, across the
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width of the beam. The percentage change in frequencies, due to crack, for di!erent
crack locations and depths were calculated and are presented in Figures 12 and 13.
These numerical results were compared with the theoretical results of equations
(11) and (14) presented in Figure 7. It is observed that the numerical results agree
qualitatively with the theoretical results.

Mesh Con,guration22: Due to increasing con"dence in the procedure, the FE
analysis was extended to more crack locations to observe the change in frequencies
as the crack moves in closely spaced intervals. In this analysis, the crack location
was assumed to move from 0)04¸ to 0)96¸ with an increment of 0)04¸ along the
length. The depth of the crack at each crack location was assumed to vary from
0)1B to 0)5B with an increment of 0)1B across the depth of the beam. The
percentage change in frequencies, for di!erent crack locations and depths were
calculated and presented in Figures 14 and 15. On comparing these results with the
theoretical results presented in Figure (7), it is observed that the agreement is much
better for this mesh con"guration.

6. DISCUSSIONS

In general, it was observed that for all four bending and torsional modes the absolute
percentage of change in frequency values increased as depth of the crack increased.

Mesh Con,guration-1: Both experimental and analytical studies were carried
out for mesh con"guration 1. Figures 9 and 10 are compared with Figures 12 and 13
and it is observed that the percentage change in frequency values were slightly higher
in the case of experiments. But the percentage change in frequency values as the crack
moved along the length showed the same qualitative trend in experimental and
analysis results. Thus, the experimental study validated the FE model results.

Mesh Con,guration-2: It is observe that the percentages of change in frequency
values were di!erent for di!erent crack locations as shown in the plots. As the crack
location moved from the clamped end to the free end, it was observed that the
percentage change in frequency values, shown in Figures 14 and 15, is similar to the
square of the strain values shown in Figure 7 representing equations (11) and (14).
Therefore, it can be concluded from these observations that:

(I) If the crack is located at the peak/trough positions of the strain mode shapes,
then the percentage change in frequency values would be higher for corres-
ponding modes.

(II) If the crack is located at the nodal points of the strain mode shapes, then the
percentage change in frequency values would be lower for corresponding
modes.

Thus, the above observation and discussions are in conformity with equations (11)
and (14).

Considering the lowest four bending strain modes, there are seven peaks/troughs
and seven nodes as listed in Table 1 above. Therefore, we can locate the crack as
that present in the vicinity of any one of the 14 locations. Similarly, we could
locatethe crack in the vicinity of 14 such locations obtained for torsional strain



TABLE 2

Percentage change in frequency due to crack

Mode no. Percentage of change in frequency

Bending modes Torsional modes

I 0)1697 2)0114
II 3)1704 7)0786
III 4)2831 1)5722
IV 1)9605 4)6405

CRACKED BEAM 993
modes. Thus accuracy of the prediction will be approximately¸/28, as illustrated in
the case study shown in Section 7 below.

7. CRACK IDENTIFICATION*A CASE STUDY

As a case study, the percentage change in frequencies for a cantilever beam
observed/measured for a particular case is presented in Table 2.

From the above data, we know that the maximum percentage of change in
frequency among the bending modes in III mode. From our observations and
conclusions I & II made in section 6, we can say that the crack would be nearer to
0)0¸ (clamped end) or 0)3075¸ or 0)7087¸ (peak/trough of III bending strain mode
shape). Maximum percentage change in frequency among the torsional modes is II
mode. This implies that, from our observation (section 6), the crack will be nearer to
0)0¸ or 0)6667¸ (peak of II torsional strain mode shape). The crack is not located
near the clamped end because the change in I bending and torsional mode is much
less. Therefore, we can conclude that the crack location will be between 0)7087¸
and 0)666¸ from the clamped end. The exact location of the crack is 0)67¸ for 50%
crack depth. Thus, the prediction based on the case study results matches closely
with the exact crack location.

8. CONCLUSION

The results of the present work have indicated that local modal parameters such as
mode shape and variation in mode shape are not good enough for identifying the
location of the crack. The change in frequencies of a few of the fundamental modes is
a valid global parameter for identifying the location of the crack. These changes in
frequency values, in real application, can be obtained by monitoring the frequencies
measured periodically by sensors mounted in the structure at the time of installation.

In this study even though we considered a simple structure, we can extend the
same procedure to identify and locate cracks in complex structures.
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APPENDIX: NOMENCLATURE

A(x) cross-section area of the beam
B breadth of the beam
E Young's modulus
G shear modulus
I(x) moment of inertia of cross section
J(x) polar moment of inertia
J
0

mass moment of inertia per unit length
¸, l length of the beam
l
0

crack location from "xed end
¹ thickness of beam
; strain energy
< kinetic energy
f forcing function
m mass per unit length
n mode number
w
n

bending mode shape of nth frequency
Dx crack width
b
n

roots of nth mode shape function
j natural frequency squarer
o density
h
n

torsional mode shape nth frequency
u natural frequency
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